A spinnable coating capable of releasing metal species to a broth of living organisms in a controlled manner is an extremely interesting material for a number of biotechnological applications. Polymer/ metal nanocomposites are a viable choice but very little is known about their biological properties. Here, a polymer based nanocomposite loading stabilized copper nanoparticles is proposed as a biostatic coating and systematic correlations between material properties and biological effects are established. Experimental proof of the nanocomposite capability to release metal species in a controlled manner and eventually to slow or even inhibit the growth of living organisms, such as fungi and other pathogenic microorganisms, are provided. The biostatic activity is correlated to the nanoparticle loading that controls the release of copper species, independently evaluated by means of electro-thermal atomic absorption spectroscopy. Insights into the understanding of the controlled releasing process, involving CuO dissolution through the nanoclusters stabilizing layer, are also proposed.

Copper nanoparticles/polymer composites with antifungal and bacteriostatic properties

CIOFFI, NICOLA;TORSI, Luisa;DITARANTO, NICOLETTA;TANTILLO, Giuseppina;SABBATINI, Luigia;
2005-01-01

Abstract

A spinnable coating capable of releasing metal species to a broth of living organisms in a controlled manner is an extremely interesting material for a number of biotechnological applications. Polymer/ metal nanocomposites are a viable choice but very little is known about their biological properties. Here, a polymer based nanocomposite loading stabilized copper nanoparticles is proposed as a biostatic coating and systematic correlations between material properties and biological effects are established. Experimental proof of the nanocomposite capability to release metal species in a controlled manner and eventually to slow or even inhibit the growth of living organisms, such as fungi and other pathogenic microorganisms, are provided. The biostatic activity is correlated to the nanoparticle loading that controls the release of copper species, independently evaluated by means of electro-thermal atomic absorption spectroscopy. Insights into the understanding of the controlled releasing process, involving CuO dissolution through the nanoclusters stabilizing layer, are also proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/121330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 717
  • ???jsp.display-item.citation.isi??? 605
social impact