The MTERF family is a large protein family, identified in metazoans and plants, which consists of four subfamilies, MTERF1, 2, 3 and 4. Mitochondrial localisation was predicted for the vast majority of MTERF family members and demonstrated for the characterised MTERF proteins. The main structural feature of MTERF proteins is the presence of a modular architecture, based on repetitions of a 30-residue module, the mTERF motif, containing leucine zipperlike heptads. The MTERF family includes transcription termination factors: human mTERF, sea urchin mtDBP and Drosophila DmTTF. In addition to terminating transcription, they are involved in transcription initiation and in the control of mtDNA replication. This multiplicity of functions seems to flank differences in the gene organisation of mitochondrial genomes. MTERF2 and MTERF3 play antithetical roles in controlling mitochondrial transcription: that is, mammalian and Drosophila MTERF3 act as negative regulators, whereas mammalian MTERF2 functions as a positive regulator. Both proteins contact mtDNA in the promoter region, perhaps establishing interactions, either mutual or with other factors. Regulation of MTERF gene expression in human and Drosophila depends on nuclear transcription factors NRF-2 and DREF, respectively, and proceeds through pathways which appear to discriminate between factors positively or negatively acting in mitochondrial transcription. In this emerging scenario, it appears that MTERF proteins act to coordinate mitochondrial transcription.

MTERF factors: a multifunction protein family

ROBERTI, Marina;LOGUERCIO POLOSA, Paola Anna Maria;BRUNI, FRANCESCO;CANTATORE, Palmiro
2010-01-01

Abstract

The MTERF family is a large protein family, identified in metazoans and plants, which consists of four subfamilies, MTERF1, 2, 3 and 4. Mitochondrial localisation was predicted for the vast majority of MTERF family members and demonstrated for the characterised MTERF proteins. The main structural feature of MTERF proteins is the presence of a modular architecture, based on repetitions of a 30-residue module, the mTERF motif, containing leucine zipperlike heptads. The MTERF family includes transcription termination factors: human mTERF, sea urchin mtDBP and Drosophila DmTTF. In addition to terminating transcription, they are involved in transcription initiation and in the control of mtDNA replication. This multiplicity of functions seems to flank differences in the gene organisation of mitochondrial genomes. MTERF2 and MTERF3 play antithetical roles in controlling mitochondrial transcription: that is, mammalian and Drosophila MTERF3 act as negative regulators, whereas mammalian MTERF2 functions as a positive regulator. Both proteins contact mtDNA in the promoter region, perhaps establishing interactions, either mutual or with other factors. Regulation of MTERF gene expression in human and Drosophila depends on nuclear transcription factors NRF-2 and DREF, respectively, and proceeds through pathways which appear to discriminate between factors positively or negatively acting in mitochondrial transcription. In this emerging scenario, it appears that MTERF proteins act to coordinate mitochondrial transcription.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/113075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact