Clustering is a fundamental task in Spatial Data Mining where data consists of observations for a site (e.g. areal units) descriptive of one or more (spatial) primary units, possibly of different type, collected within the same site boundary. The goal is to group structured objects, i.e. data collected at different sites, such that data inside each cluster models the continuity of socio-economic or geographic environment, while separate clusters model variation over the space. Continuity is evaluated according to the spatial organization arising in data, namely discrete spatial structure, expressing the (spatial) relations between separate sites implicitly defined by their geometrical representation and positioning. Data collected within sites that are (transitively) connected in the discrete spatial structure are clustered together according to the similarity on multi-relational descriptions representing their internal structure. CORSO is a novel spatial data mining method that resorts to a multi-relational approach to learn relational spatial data and exploits the concept of neighborhood to capture relational constraints embedded in the discrete spatial structure. Relational data are expressed in a first-order formalism and similarity among structured objects is computed as degree of matching with respect to a common generalization. The application to real-world spatial data is reported.

Spatial Clustering of Structured Objects

MALERBA, Donato;APPICE, ANNALISA;
2005

Abstract

Clustering is a fundamental task in Spatial Data Mining where data consists of observations for a site (e.g. areal units) descriptive of one or more (spatial) primary units, possibly of different type, collected within the same site boundary. The goal is to group structured objects, i.e. data collected at different sites, such that data inside each cluster models the continuity of socio-economic or geographic environment, while separate clusters model variation over the space. Continuity is evaluated according to the spatial organization arising in data, namely discrete spatial structure, expressing the (spatial) relations between separate sites implicitly defined by their geometrical representation and positioning. Data collected within sites that are (transitively) connected in the discrete spatial structure are clustered together according to the similarity on multi-relational descriptions representing their internal structure. CORSO is a novel spatial data mining method that resorts to a multi-relational approach to learn relational spatial data and exploits the concept of neighborhood to capture relational constraints embedded in the discrete spatial structure. Relational data are expressed in a first-order formalism and similarity among structured objects is computed as degree of matching with respect to a common generalization. The application to real-world spatial data is reported.
3-540-28177-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/11213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact