Gene regulatory networks can be described by continuous models in which genes are acting directly on each other. Genes are activated or inhibited by transcription factors which are direct gene products. The action of a transcription factor on a gene is modeled as a binary on-off response function around a certain threshold concentration. Different thresholds can regulate the behaviors of genes, so that the combined effect on a gene is generally assumed to obey Boolean-like composition rules. Analyzing the behavior of such network model is a challenging task in mathematical simulation, particularly when at least one variable is close to one of its thresholds, called switching domains. In this paper, we briefly review a particular class model for gene regulation networks, namely, the piece-wise linear model and we present an event-driven method to analyze the motion in switching domains.

Event Driven Approach for Simulating Gene Regulation Networks

DEL BUONO, Nicoletta;
2014-01-01

Abstract

Gene regulatory networks can be described by continuous models in which genes are acting directly on each other. Genes are activated or inhibited by transcription factors which are direct gene products. The action of a transcription factor on a gene is modeled as a binary on-off response function around a certain threshold concentration. Different thresholds can regulate the behaviors of genes, so that the combined effect on a gene is generally assumed to obey Boolean-like composition rules. Analyzing the behavior of such network model is a challenging task in mathematical simulation, particularly when at least one variable is close to one of its thresholds, called switching domains. In this paper, we briefly review a particular class model for gene regulation networks, namely, the piece-wise linear model and we present an event-driven method to analyze the motion in switching domains.
2014
978-3-319-09152-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/106635
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact