We present an extensive rheology study of the wormlike micelle system lecithin-water-cyclohexane. In this system the micelles are really wormlike, meaning that there are no signs of micellar branching, as it has previously been demonstrated by NMR self-diffusion experiments (Angelico et al. Phys. Rev. Lett. 1998, 81, 2823). Wormlike micelles break and recombine, processes that are important for the stress relaxation. When branching is highly unfavorable, micelle recombination reactions only involve micelle ends, the concentration of which are very low when the micelles are very long. Hence, the break and recombination kinetics is very slow for true wormlike micelles. In the present system, the stress relaxation times are of the order of an hour. This is about three to four orders of magnitude longer than what commonly is observed in systems claimed to contain wormlike micelles. We conclude that systems with true wormlike micelles are very rare. An exponential stress relaxation is observed except at lower concentrations, where the micellar breaking time appears to exceed the reptation time. Because of the slow dynamics, the linear elastic modulus can be obtained from small rapid shear deformations, for which the system obeys Hooke’s law. Larger deformations result in a fracture of the micellar network at a critical strain gamma*~FI-1, where FI is the micelle volume fraction. For gamma<gamma* we may still obtain fracture, although with a lag time, tau*, that decreases with increasing gamma, and vanishes when gamma=gamma*. Extrapolating gamma* to zero deformation we obtain the estimate ≈250 s at the highest concentration FI=0.29. This time we interpret as equilibrium micellar breaking time for the system at rest. A quantity not previously measured.

Slow Dynamics of Wormlike Micelles

PALAZZO, Gerardo
2010-01-01

Abstract

We present an extensive rheology study of the wormlike micelle system lecithin-water-cyclohexane. In this system the micelles are really wormlike, meaning that there are no signs of micellar branching, as it has previously been demonstrated by NMR self-diffusion experiments (Angelico et al. Phys. Rev. Lett. 1998, 81, 2823). Wormlike micelles break and recombine, processes that are important for the stress relaxation. When branching is highly unfavorable, micelle recombination reactions only involve micelle ends, the concentration of which are very low when the micelles are very long. Hence, the break and recombination kinetics is very slow for true wormlike micelles. In the present system, the stress relaxation times are of the order of an hour. This is about three to four orders of magnitude longer than what commonly is observed in systems claimed to contain wormlike micelles. We conclude that systems with true wormlike micelles are very rare. An exponential stress relaxation is observed except at lower concentrations, where the micellar breaking time appears to exceed the reptation time. Because of the slow dynamics, the linear elastic modulus can be obtained from small rapid shear deformations, for which the system obeys Hooke’s law. Larger deformations result in a fracture of the micellar network at a critical strain gamma*~FI-1, where FI is the micelle volume fraction. For gamma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/99664
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact