Reductive models ((g,h),H) for Cartan geometries are showed to fall into two classes, symmetric and non symmetric type, according to the existence or non existence of a mutation g'=h+m where the H-module m is an abelian subalgebra. Sasakian structures are showed to be Cartan geometries having a model of non symmetric type and other examples of models of this type are exhibited. Reductive models for which no Cartan space forms exist are constructed. The phenomenon of non-existence of Cartan space forms pertains to models of non symmetric type.

On model mutation for reductive Cartan geometries and non-existence of Cartan space forms

LOTTA, Antonio
2004

Abstract

Reductive models ((g,h),H) for Cartan geometries are showed to fall into two classes, symmetric and non symmetric type, according to the existence or non existence of a mutation g'=h+m where the H-module m is an abelian subalgebra. Sasakian structures are showed to be Cartan geometries having a model of non symmetric type and other examples of models of this type are exhibited. Reductive models for which no Cartan space forms exist are constructed. The phenomenon of non-existence of Cartan space forms pertains to models of non symmetric type.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/9887
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact