Objectives: Fructose-1,6-diphosphate is a glycolytic intermediate that has been shown experimentally to cross the cell membrane and lead to increased glycolytic flux. Because glycolysis is an important energy source for myocardium during early reperfusion, we sought to determine the effects of fructose-1,6-diphosphate on recovery of postischemic contractile function, Methods: Langendorff-perfused rabbit hearts were infused with fructose-1,6-diphosphate (5 and 10 mmol/L, n = 5 per group) in a nonischemic model. In a second group of hearts subjected to 35 minutes of ischemia at 37 degrees C followed by reperfusion (n = 6 per group), a 5 mmol/L concentration of fructose-1,6-diphosphate was infused during the first 30 minutes of reperfusion, We measured contractile function, glucose uptake, lactate production, and adenosine triphosphate and phosphocreatine levels by phosphorus 31-nuclear magnetic resonance spectroscopy, Results: In the nonischemic hearts, fructose-1,6-diphosphate resulted in a dose-dependent increase in glucose uptake, adenosine triphosphate, phosphocreatine, and inorganic phosphate levels. During the infusion of fructose-1,6-diphosphate, developed pressure and extracellular calcium levels decreased. Developed pressure was restored to near control values by normalizing extracellular calcium, In the ischemia/reperfusion model, after 60 minutes of reperfusion the hearts that received fructose-1,6-diphosphate during the first 30 minutes of reperfusion had higher developed pressures (83 +/- 2 vs 70 +/- 4 mm Hg, p < 0.05), lower diastolic pressures (7 +/- 1 vs 12 +/- 2 mm Hg, p < 0.05), and higher phosphocreatine levels than control untreated hearts. Glucose uptake was also greater after ischemia in the hearts treated with fructose-1,6-diphosphate. Conclusions: We conclude that fructose-1,6-diphosphate, when given during early reperfusion, significantly improves recovery of both diastolic and systolic function in association with increased glucose uptake and higher phosphocreatine levels during reperfusion.

Administration of fructose 1,6-diphosphate during early reperfusion significantly improves recovery of contractile function in the postischemic heart

D'AGOSTINO, Donato;
1998-01-01

Abstract

Objectives: Fructose-1,6-diphosphate is a glycolytic intermediate that has been shown experimentally to cross the cell membrane and lead to increased glycolytic flux. Because glycolysis is an important energy source for myocardium during early reperfusion, we sought to determine the effects of fructose-1,6-diphosphate on recovery of postischemic contractile function, Methods: Langendorff-perfused rabbit hearts were infused with fructose-1,6-diphosphate (5 and 10 mmol/L, n = 5 per group) in a nonischemic model. In a second group of hearts subjected to 35 minutes of ischemia at 37 degrees C followed by reperfusion (n = 6 per group), a 5 mmol/L concentration of fructose-1,6-diphosphate was infused during the first 30 minutes of reperfusion, We measured contractile function, glucose uptake, lactate production, and adenosine triphosphate and phosphocreatine levels by phosphorus 31-nuclear magnetic resonance spectroscopy, Results: In the nonischemic hearts, fructose-1,6-diphosphate resulted in a dose-dependent increase in glucose uptake, adenosine triphosphate, phosphocreatine, and inorganic phosphate levels. During the infusion of fructose-1,6-diphosphate, developed pressure and extracellular calcium levels decreased. Developed pressure was restored to near control values by normalizing extracellular calcium, In the ischemia/reperfusion model, after 60 minutes of reperfusion the hearts that received fructose-1,6-diphosphate during the first 30 minutes of reperfusion had higher developed pressures (83 +/- 2 vs 70 +/- 4 mm Hg, p < 0.05), lower diastolic pressures (7 +/- 1 vs 12 +/- 2 mm Hg, p < 0.05), and higher phosphocreatine levels than control untreated hearts. Glucose uptake was also greater after ischemia in the hearts treated with fructose-1,6-diphosphate. Conclusions: We conclude that fructose-1,6-diphosphate, when given during early reperfusion, significantly improves recovery of both diastolic and systolic function in association with increased glucose uptake and higher phosphocreatine levels during reperfusion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/97682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact