We give a constructive argument to establish existence of a smooth singular value decomposition (SVD) for a generic $C^k$ symplectic function X. We rely on the explicit structure of the polar factorization of X in order to justify the form of the SVD. Our construction gives a new algorithm to find the SVD of X, which we have used to approximate the Lyapunov exponents of a Hamiltonian differential system. Algorithmic details and an example are given.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Smooth singular value decomposition on the symplectic group and Lyapunov exponents approximation |
Autori: | |
Data di pubblicazione: | 2006 |
Rivista: | |
Abstract: | We give a constructive argument to establish existence of a smooth singular value decomposition (SVD) for a generic $C^k$ symplectic function X. We rely on the explicit structure of the polar factorization of X in order to justify the form of the SVD. Our construction gives a new algorithm to find the SVD of X, which we have used to approximate the Lyapunov exponents of a Hamiltonian differential system. Algorithmic details and an example are given. |
Handle: | http://hdl.handle.net/11586/9756 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.