We give a constructive argument to establish existence of a smooth singular value decomposition (SVD) for a generic $C^k$ symplectic function X. We rely on the explicit structure of the polar factorization of X in order to justify the form of the SVD. Our construction gives a new algorithm to find the SVD of X, which we have used to approximate the Lyapunov exponents of a Hamiltonian differential system. Algorithmic details and an example are given.

Smooth singular value decomposition on the symplectic group and Lyapunov exponents approximation

LOPEZ, Luciano
2006

Abstract

We give a constructive argument to establish existence of a smooth singular value decomposition (SVD) for a generic $C^k$ symplectic function X. We rely on the explicit structure of the polar factorization of X in order to justify the form of the SVD. Our construction gives a new algorithm to find the SVD of X, which we have used to approximate the Lyapunov exponents of a Hamiltonian differential system. Algorithmic details and an example are given.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/9756
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact