Given an m-tuple (A(1),...,A(m)) of finite dimensional *-simple algebras we introduce a block-triangular matrix algebra with involution, denoted as UT*(A(1),...,A(m)), where each A(i) can be embedded as *algebra. We describe the T*-ideal of R = UT*(A(1),...,A(m)) in terms of the ideals T*(A(i)) and prove that any algebra with involution which is minimal with respect to its *-exponent is *-PI equivalent to R for a suitable choice of (A(1),...,A(m)). Moreover we show that if m = 1 or A(i) = F for all i then R itself is a *-minimal algebra. The assumption for the base field F is characteristic zero.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Minimal algebras with respect to their $*$-exponent |
Autori: | |
Data di pubblicazione: | 2007 |
Rivista: | |
Handle: | http://hdl.handle.net/11586/9561 |
Appare nelle tipologie: | 1.1 Articolo in rivista |