We consider the numerical integration of discontinuous differential systems of ODEs of the type: x' = f_1(x) when h(x) < 0 and x'= f_2(x) when h(x) > 0, and with f1 \neq f2 for x ∈ Σ, where Σ := {x: h(x) = 0} is a smooth co-dimension one discontinuity surface. Often, f1 and f2 are defined on the whole space, but there are applications where f1 is not defined above Σ and f2 is not defined below Σ. For this reason, we consider explicit Runge–Kutta methods which do not evaluate f1 above Σ (respectively, f2 below Σ). We exemplify our approach with subdiagonal explicit Runge–Kutta methods of order up to 4. We restrict attention only to integration up to the point where a trajectory reaches Σ.

Numerical Solution of Discontinuous Differential Systems: Approaching the Discontinuity Surface from One-Side

LOPEZ, Luciano
2013-01-01

Abstract

We consider the numerical integration of discontinuous differential systems of ODEs of the type: x' = f_1(x) when h(x) < 0 and x'= f_2(x) when h(x) > 0, and with f1 \neq f2 for x ∈ Σ, where Σ := {x: h(x) = 0} is a smooth co-dimension one discontinuity surface. Often, f1 and f2 are defined on the whole space, but there are applications where f1 is not defined above Σ and f2 is not defined below Σ. For this reason, we consider explicit Runge–Kutta methods which do not evaluate f1 above Σ (respectively, f2 below Σ). We exemplify our approach with subdiagonal explicit Runge–Kutta methods of order up to 4. We restrict attention only to integration up to the point where a trajectory reaches Σ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/95477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact