We have studied the quasielastic He-3(e,e(')p)H-2 reaction in perpendicular coplanar kinematics, with the energy and the momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The He-3(e,e(')p)H-2 cross section was measured for missing momenta up to 1000 MeV/c, while the A(TL) asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the cross section is described by variational calculations using modern He-3 wave functions. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A(TL) asymmetry displays characteristic features of broken factorization with a structure that is similar to that generated by available models.
Quasielastic He-3(e,e(')p)H-2 reaction at Q(2)=1.5 GeV2 for recoil momenta up to 1 GeV/c
DE LEO, Raffaele;
2005-01-01
Abstract
We have studied the quasielastic He-3(e,e(')p)H-2 reaction in perpendicular coplanar kinematics, with the energy and the momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The He-3(e,e(')p)H-2 cross section was measured for missing momenta up to 1000 MeV/c, while the A(TL) asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the cross section is described by variational calculations using modern He-3 wave functions. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A(TL) asymmetry displays characteristic features of broken factorization with a structure that is similar to that generated by available models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.