A pool of twelve cDNA sequences coding for Bowman-Birk inhibitors (BBIs) was identified in the legume grass pea (Lathyrus sativus L.). The corresponding amino acid sequences showed a canonical first anti-trypsin domain, predicted according to the identity of the determinant residue P(1). A more variable second binding loop was observed allowing to identify three groups based on the identity of residue P(1): two groups (Ls_BBI_1 and Ls_BBI_2) carried a second reactive site specific for chymotrypsin, while a third group (Ls_BBI_3) was predicted to inhibit elastase. A fourth variant carrying an Asp in the P(1) position of the second reactive site was identified only from genomic DNA. A phylogenetic tree constructed using grass pea BBIs with their homologs from other legume species revealed grouping based on taxonomy and on specificity of the reactive sites. Five BBI sequences, representing five different second reactive sites, were heterologously expressed in the yeast Pichia pastoris. The recombinant proteins demonstrated to be active against trypsin, while three of them were also active against chymotrypsin, and one against human leukocyte elastase. Comparative modeling and protein docking were used to further investigate interactions between two grass pea BBI isoforms and their target proteases. Thus two reliable 3D models have been proposed, representing two potential ternary complexes, each constituted of an inhibitor and its target enzymes.

Isolation and characterization of novel variants of BBI coding genes from the legume Lathyrus sativus.

PIERRI, CIRO LEONARDO;
2012

Abstract

A pool of twelve cDNA sequences coding for Bowman-Birk inhibitors (BBIs) was identified in the legume grass pea (Lathyrus sativus L.). The corresponding amino acid sequences showed a canonical first anti-trypsin domain, predicted according to the identity of the determinant residue P(1). A more variable second binding loop was observed allowing to identify three groups based on the identity of residue P(1): two groups (Ls_BBI_1 and Ls_BBI_2) carried a second reactive site specific for chymotrypsin, while a third group (Ls_BBI_3) was predicted to inhibit elastase. A fourth variant carrying an Asp in the P(1) position of the second reactive site was identified only from genomic DNA. A phylogenetic tree constructed using grass pea BBIs with their homologs from other legume species revealed grouping based on taxonomy and on specificity of the reactive sites. Five BBI sequences, representing five different second reactive sites, were heterologously expressed in the yeast Pichia pastoris. The recombinant proteins demonstrated to be active against trypsin, while three of them were also active against chymotrypsin, and one against human leukocyte elastase. Comparative modeling and protein docking were used to further investigate interactions between two grass pea BBI isoforms and their target proteases. Thus two reliable 3D models have been proposed, representing two potential ternary complexes, each constituted of an inhibitor and its target enzymes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/88532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact