Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions utt = div( A∇u) − γ (x, ut ), in (0, ∞) × Ω, u(0, ·) = f , ut (0, ·) = g, in Ω, utt + β∂ Aν u + c(x)u + δ(x, ut ) − qβ∆LB u = 0, on (0, ∞) × ∂ Ω. for t ≥ 0 and x ∈ Ω ⊂ R^N ; the last equation holds on the boundary ∂ Ω. Here A = {aij (x)}ij is a real, hermitian, uniformly positive definite N × N matrix; β ∈ C (∂ Ω), with β > 0; γ : Ω × R → R; δ : ∂ Ω × R → R; c : ∂ Ω → R; q ≥ 0, ∆LB is the Laplace-Beltrami operator on ∂ Ω, and ∂ Aν u is the conormal derivative of u with respect to A; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients A, β, γ , δ, c, q, and the initial conditions f , g. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.

Stability Estimates for Nonlinear Hyperbolic Problems with nonlinear Wentzell boundary conditions

COCLITE, Giuseppe Maria;
2013-01-01

Abstract

Of concern is the nonlinear hyperbolic problem with nonlinear dynamic boundary conditions utt = div( A∇u) − γ (x, ut ), in (0, ∞) × Ω, u(0, ·) = f , ut (0, ·) = g, in Ω, utt + β∂ Aν u + c(x)u + δ(x, ut ) − qβ∆LB u = 0, on (0, ∞) × ∂ Ω. for t ≥ 0 and x ∈ Ω ⊂ R^N ; the last equation holds on the boundary ∂ Ω. Here A = {aij (x)}ij is a real, hermitian, uniformly positive definite N × N matrix; β ∈ C (∂ Ω), with β > 0; γ : Ω × R → R; δ : ∂ Ω × R → R; c : ∂ Ω → R; q ≥ 0, ∆LB is the Laplace-Beltrami operator on ∂ Ω, and ∂ Aν u is the conormal derivative of u with respect to A; everything is sufficiently regular. We prove explicit stability estimates of the solution u with respect to the coefficients A, β, γ , δ, c, q, and the initial conditions f , g. Our arguments cover the singular case of a problem with q = 0 which is approximated by problems with positive q.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact