Krylov subspace methods for approximating the action of the matrix exponential exp(A) on a vector v are analyzed with A Hermitian and negative semidefinite. Our approach is based on approximating the exponential with the commonly employed diagonal Pad´e and Chebyshev rational functions, which yield a system of equations with a polynomial coefficient matrix. We derive optimality properties and error bounds for the convergence of a Galerkin-type approximation and of a computationally feasible and extensively used alternative. As complementary results, we theoretically justify the use of a popular a posteriori error estimate, and we provide upper bounds for the components of the solution vector. Our theoretical and numerical results show that this methodology may provide an appropriate framework to devise new strategies such as more powerful acceleration schemes.

Analysis of projection methods for rational function approximation to the matrix exponential

LOPEZ, Luciano;
2006-01-01

Abstract

Krylov subspace methods for approximating the action of the matrix exponential exp(A) on a vector v are analyzed with A Hermitian and negative semidefinite. Our approach is based on approximating the exponential with the commonly employed diagonal Pad´e and Chebyshev rational functions, which yield a system of equations with a polynomial coefficient matrix. We derive optimality properties and error bounds for the convergence of a Galerkin-type approximation and of a computationally feasible and extensively used alternative. As complementary results, we theoretically justify the use of a popular a posteriori error estimate, and we provide upper bounds for the components of the solution vector. Our theoretical and numerical results show that this methodology may provide an appropriate framework to devise new strategies such as more powerful acceleration schemes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/83794
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact