We report on the structural and functional properties of the Helix contactin-related proteins (HCRPs), a family of closely related glycoproteins previously identified in the nervous system of the land snail Helix pomatia through antibodies against the mouse F3/contactin glycoprotein. We focus on HCRP1 and HCRP2, soluble FNIII domains-containing proteins of 90 and 45 kD bearing consensus motifs for both N- and O-glycosylation. Using the anti-HCRPs serum, we find secreted HCRPs in Helix nervous tissue isotonic extracts and in culture medium conditioned by Helix ganglia. In addition, we demonstrate expression of HCRPs on neuronal soma and on neurite extensions. Functionally, in Helix neurons, the antisense HCRP2 mRNA counteracts neurite elongation, and the recombinant HCRP2 protein exerts a strong positive effect on neurite growth when used as substrate. These data point to HCRPs as novel neurite growth-promoting molecules expressed in invertebrate nervous tissue.

Characterization and role of Helix contactin-related proteins in cultured Helix pomatia neurons

BIZZOCA, ANTONELLA;GENNARINI, Gianfranco;
2009-01-01

Abstract

We report on the structural and functional properties of the Helix contactin-related proteins (HCRPs), a family of closely related glycoproteins previously identified in the nervous system of the land snail Helix pomatia through antibodies against the mouse F3/contactin glycoprotein. We focus on HCRP1 and HCRP2, soluble FNIII domains-containing proteins of 90 and 45 kD bearing consensus motifs for both N- and O-glycosylation. Using the anti-HCRPs serum, we find secreted HCRPs in Helix nervous tissue isotonic extracts and in culture medium conditioned by Helix ganglia. In addition, we demonstrate expression of HCRPs on neuronal soma and on neurite extensions. Functionally, in Helix neurons, the antisense HCRP2 mRNA counteracts neurite elongation, and the recombinant HCRP2 protein exerts a strong positive effect on neurite growth when used as substrate. These data point to HCRPs as novel neurite growth-promoting molecules expressed in invertebrate nervous tissue.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/82161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact