New strategies aimed to surface modification of polymeric membranes are crucial to optimise cell-biomaterial interactions in vivo and in vitro biohybrid systems. In this paper, we investigated the surface modification of Polyethersulfone (PES) membranes by plasma polymerisation of acrylic acid monomers (PES-pdAA) and by immobilization of galactonic acid through a hydrophilic "spacer arm" molecule (PES-pdAA-SA-GAL). The modification steps were characterised by high resolution X-ray photoelectron spectroscopy. The performance of modified and unmodified membranes was evaluated by assessing the expression of liver specific biotransformation functions of pig and human hepatocytes. Human liver cells cultured on PES-pdAA-SA-GAL membranes displayed an enhanced albumin production, urea synthesis and protein secretion for 24 days of culture. The immobilisation of galactose derivative units on the membrane allowed specific interactions with hepatocytes biomimicking the cellular microenvironment and produced an improvement of the long-term maintenance and differentiation of human hepatocytes.

Galactose derivative immobilized glow discharge processed PES membranes mantain the liver cell metabolic ativity

FAVIA, Pietro;
2006

Abstract

New strategies aimed to surface modification of polymeric membranes are crucial to optimise cell-biomaterial interactions in vivo and in vitro biohybrid systems. In this paper, we investigated the surface modification of Polyethersulfone (PES) membranes by plasma polymerisation of acrylic acid monomers (PES-pdAA) and by immobilization of galactonic acid through a hydrophilic "spacer arm" molecule (PES-pdAA-SA-GAL). The modification steps were characterised by high resolution X-ray photoelectron spectroscopy. The performance of modified and unmodified membranes was evaluated by assessing the expression of liver specific biotransformation functions of pig and human hepatocytes. Human liver cells cultured on PES-pdAA-SA-GAL membranes displayed an enhanced albumin production, urea synthesis and protein secretion for 24 days of culture. The immobilisation of galactose derivative units on the membrane allowed specific interactions with hepatocytes biomimicking the cellular microenvironment and produced an improvement of the long-term maintenance and differentiation of human hepatocytes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/82074
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact