Single energy X-ray imaging, due to its low cost and flexibility, is one of the most used and common technique to assess bone state and bone remodeling over time. Standardized X-ray images are needed to compare sets of radiographs for semi-quantitative analyses of tissue remodeling. However, useful mathematical modeling for the analysis of high level radiographic images are not easily available. In order to propose a useful evaluation tool to a wide clinical scenario, we present an innovative calibration algorithm for a semi-quantitative analysis of non-standardized digitized X-ray images. For calibration on a unique standardization scale, three time invariant regions (ROI) of radiographs were selected and analyzed. The accuracy of the normalization method for X-ray films was successfully validated by using an aluminum step wedge for routine X-ray exposures as tool to standardize serial radiographs (Pearson correlation test: R-2=0.96). This method was applied to investigate the progression of the new bone deposition within ceramic scaffolds used as osteoconductive substitute in large bone defects taking advantage of a large animal model. This innovative image-processing algorithm allowed the identification and semi-quantification of the bone matrix deposited within the implant. The osteo-integration at the bone-implant interface was also investigated. A progressively increasing bone tissue deposition within the porous bioceramic implant and a progressive osteo-integration was observed during the 12 months of the trial.

A simple non invasive computerized method for the assessment of bone repair within osteoconductive porous bioceramic grafts

CROVACE, Antonio;VALASTRO, CARMELA;
2005-01-01

Abstract

Single energy X-ray imaging, due to its low cost and flexibility, is one of the most used and common technique to assess bone state and bone remodeling over time. Standardized X-ray images are needed to compare sets of radiographs for semi-quantitative analyses of tissue remodeling. However, useful mathematical modeling for the analysis of high level radiographic images are not easily available. In order to propose a useful evaluation tool to a wide clinical scenario, we present an innovative calibration algorithm for a semi-quantitative analysis of non-standardized digitized X-ray images. For calibration on a unique standardization scale, three time invariant regions (ROI) of radiographs were selected and analyzed. The accuracy of the normalization method for X-ray films was successfully validated by using an aluminum step wedge for routine X-ray exposures as tool to standardize serial radiographs (Pearson correlation test: R-2=0.96). This method was applied to investigate the progression of the new bone deposition within ceramic scaffolds used as osteoconductive substitute in large bone defects taking advantage of a large animal model. This innovative image-processing algorithm allowed the identification and semi-quantification of the bone matrix deposited within the implant. The osteo-integration at the bone-implant interface was also investigated. A progressively increasing bone tissue deposition within the porous bioceramic implant and a progressive osteo-integration was observed during the 12 months of the trial.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/80711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact