The effects of the exposure of organic thin-film transistors, comprising different organic semiconductors and gate dielectrics, to 1-pentanol are investigated. The transistor sensors exhibited an increase or a decrease of the transient source-drain current in the presence of the analyte, most likely as a result of a trapping or of a doping process of the organic active layer. The occurrence of these two effects, that can also coexist, depend on the gate-dielectric/organic semiconductor interface and on the applied gate field. Evidence of a systematic and sizable response enhancement for an OTFT sensor operated in the enhanced mode is also presented. (c) 2005 Elsevier B.V. All rights reserved.

Interface and gate bias dependent responses of sensing organic thin-film transistors

Torsi L.
2005

Abstract

The effects of the exposure of organic thin-film transistors, comprising different organic semiconductors and gate dielectrics, to 1-pentanol are investigated. The transistor sensors exhibited an increase or a decrease of the transient source-drain current in the presence of the analyte, most likely as a result of a trapping or of a doping process of the organic active layer. The occurrence of these two effects, that can also coexist, depend on the gate-dielectric/organic semiconductor interface and on the applied gate field. Evidence of a systematic and sizable response enhancement for an OTFT sensor operated in the enhanced mode is also presented. (c) 2005 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/80008
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 51
social impact