In Artificial Intelligence with Coalition Structure Generation (CSG) one refers to those cooperative complex problems that require to find an optimal partition (maximizing a social welfare) of a set of entities involved in a system. The solution of the CSG problem finds applications in many fields such as Machine Learning (set covering machines, clustering), Data Mining (decision tree, discretization), Graph Theory, Natural Language Processing (aggregation), Semantic Web (service composition), and Bioinformatics. The problem of finding the optimal coalition structure is NP-complete. In this paper we present a greedy adaptive search procedure (GRASP) with path-relinking to efficiently search the space of coalition structures. Experiments and comparisons to other algorithms prove the validity of the proposed method in solving this hard combinatorial problem.
Grasp and Path-Relinking for Coalition Structure Generation
DI MAURO, NICOLA;BASILE, TERESA MARIA;FERILLI, Stefano;ESPOSITO, Floriana
2014-01-01
Abstract
In Artificial Intelligence with Coalition Structure Generation (CSG) one refers to those cooperative complex problems that require to find an optimal partition (maximizing a social welfare) of a set of entities involved in a system. The solution of the CSG problem finds applications in many fields such as Machine Learning (set covering machines, clustering), Data Mining (decision tree, discretization), Graph Theory, Natural Language Processing (aggregation), Semantic Web (service composition), and Bioinformatics. The problem of finding the optimal coalition structure is NP-complete. In this paper we present a greedy adaptive search procedure (GRASP) with path-relinking to efficiently search the space of coalition structures. Experiments and comparisons to other algorithms prove the validity of the proposed method in solving this hard combinatorial problem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.