Oxidizing conditions must be maintained in the endoplasmic reticulum (ER) to allow the formation of disulfide bonds in secretory proteins. Here we report the cloning and characterization of a mammalian gene (ERO1-L) that shares extensive homology with the Saccharomyces cerevisiae ERO1 gene, required in yeast for oxidative protein folding. When expressed in mammalian cells, the product of the human ERO1-L gene co-localizes with ER markers and displays Endo-H-sensitive glycans. In isolated microsomes, ERO1-L behaves as a type II integral membrane protein. ERO1-L is able to complement several phenotypic traits of the yeast thermosensitive mutant ero1-1, including temperature and dithiothreitol sensitivity, and intrachain disulfide bond formation in carboxypeptidase Y. ERO1-L is no longer functional when either one of the highly conserved Cys-394 or Cys-397 is mutated. These results strongly suggest that ERO1-L is involved in oxidative ER protein folding in mammalian cells.

ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum

ROCCHI, Mariano;
2000-01-01

Abstract

Oxidizing conditions must be maintained in the endoplasmic reticulum (ER) to allow the formation of disulfide bonds in secretory proteins. Here we report the cloning and characterization of a mammalian gene (ERO1-L) that shares extensive homology with the Saccharomyces cerevisiae ERO1 gene, required in yeast for oxidative protein folding. When expressed in mammalian cells, the product of the human ERO1-L gene co-localizes with ER markers and displays Endo-H-sensitive glycans. In isolated microsomes, ERO1-L behaves as a type II integral membrane protein. ERO1-L is able to complement several phenotypic traits of the yeast thermosensitive mutant ero1-1, including temperature and dithiothreitol sensitivity, and intrachain disulfide bond formation in carboxypeptidase Y. ERO1-L is no longer functional when either one of the highly conserved Cys-394 or Cys-397 is mutated. These results strongly suggest that ERO1-L is involved in oxidative ER protein folding in mammalian cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/77469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 260
  • ???jsp.display-item.citation.isi??? 251
social impact