We consider the restriction of twice differentiable functionals on a Hilbert space to families of subspaces that vary continuously with respect to the gap metric. We study bifurcation of branches of critical points along these families, and apply our results to semilinear systems of ordinary differential equations.

Bifurcation of critical points along gap-continuous families of subspaces

CANDELA, Anna Maria;
2017-01-01

Abstract

We consider the restriction of twice differentiable functionals on a Hilbert space to families of subspaces that vary continuously with respect to the gap metric. We study bifurcation of branches of critical points along these families, and apply our results to semilinear systems of ordinary differential equations.
File in questo prodotto:
File Dimensione Formato  
Candela-Waterstraat2017_Article_Bifurcatio

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 542.58 kB
Formato Unknown
542.58 kB Unknown   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/72808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact