We consider the restriction of twice differentiable functionals on a Hilbert space to families of subspaces that vary continuously with respect to the gap metric. We study bifurcation of branches of critical points along these families, and apply our results to semilinear systems of ordinary differential equations.
Bifurcation of critical points along gap-continuous families of subspaces
CANDELA, Anna Maria;
2017-01-01
Abstract
We consider the restriction of twice differentiable functionals on a Hilbert space to families of subspaces that vary continuously with respect to the gap metric. We study bifurcation of branches of critical points along these families, and apply our results to semilinear systems of ordinary differential equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Candela-Waterstraat2017_Article_Bifurcatio
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
542.58 kB
Formato
Unknown
|
542.58 kB | Unknown | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.