We investigate the Cauchy problem for homogeneous equations of order m in the (t, x)-plane, with coefficients depending only on x. Assuming that the characteristic roots satisfy an algebraic condition we succeed in constructing a smooth symmetrizer which behaves like a diagonal matrix: this allows us to prove the well-posedness in C-infinity.

Homogeneous hyperbolic equations with coefficients depending on one space variable

TAGLIALATELA, Giovanni
2007-01-01

Abstract

We investigate the Cauchy problem for homogeneous equations of order m in the (t, x)-plane, with coefficients depending only on x. Assuming that the characteristic roots satisfy an algebraic condition we succeed in constructing a smooth symmetrizer which behaves like a diagonal matrix: this allows us to prove the well-posedness in C-infinity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/72615
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact