The paper is concerned with the optimal harvesting of a marine park, which is described by a parabolic heat equation with Neumann boundary conditions and a nonlinear source term. We consider a cost functional, which is linear with respect to the control; hence the optimal solution can belong to the class of measure-valued control strategies. For each control function, we prove existence, uniqueness and stability estimates for solutions of the parabolic equation. Moreover, we prove the existence of an optimal solution. Finally, some numerical simulations conclude the paper.

A Time Dependent Optimal Harvesting Problem with Measure Valued Solutions.

COCLITE, Giuseppe Maria;
In corso di stampa

Abstract

The paper is concerned with the optimal harvesting of a marine park, which is described by a parabolic heat equation with Neumann boundary conditions and a nonlinear source term. We consider a cost functional, which is linear with respect to the control; hence the optimal solution can belong to the class of measure-valued control strategies. For each control function, we prove existence, uniqueness and stability estimates for solutions of the parabolic equation. Moreover, we prove the existence of an optimal solution. Finally, some numerical simulations conclude the paper.
In corso di stampa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/66384
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact