Aromatic monocarboxylic acids are known to significantly potentiate the mechanical response of skeletal muscle fibers. In this study we investigated the effects of enantiomers of 2-(4-chlorophenoxy)propionic acid, chemically one of the simplest aromatic monocarboxylic acids with chiral properties, on mechanical threshold and charge movement in frog skeletal muscle. The R(+), but not the S(-), enantiomer lowered rheobase mechanical threshold and shifted charge movement to more negative potentials. The R(+) enantiomer also significantly slowed charge movement kinetics, with pronounced delays of the OFF charge transitions. These effects required high temperature for their production. The stereospecific actions of the R(+) enantiomer are interpreted in terms of a specific interaction of this compound at an anion-sensitive site involved in excitation-contraction coupling, most likely on the dihydropyridine-sensitive voltage sensor in the T-system
Enantiomeric effects on excitation-contraction coupling in frog skeletal muscle by a chiral phenoxy carboxylic acid
CONTE, Diana;
1990-01-01
Abstract
Aromatic monocarboxylic acids are known to significantly potentiate the mechanical response of skeletal muscle fibers. In this study we investigated the effects of enantiomers of 2-(4-chlorophenoxy)propionic acid, chemically one of the simplest aromatic monocarboxylic acids with chiral properties, on mechanical threshold and charge movement in frog skeletal muscle. The R(+), but not the S(-), enantiomer lowered rheobase mechanical threshold and shifted charge movement to more negative potentials. The R(+) enantiomer also significantly slowed charge movement kinetics, with pronounced delays of the OFF charge transitions. These effects required high temperature for their production. The stereospecific actions of the R(+) enantiomer are interpreted in terms of a specific interaction of this compound at an anion-sensitive site involved in excitation-contraction coupling, most likely on the dihydropyridine-sensitive voltage sensor in the T-systemI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.