The effect of acetyl-L-carnitine on succinate oxidation, adenine nucleotide pool and lipid composition of synaptic and 'free', non-synaptic, mitochondria in cerebral hemispheres of senescent rats has been studied. Fisher rats (24- or 28-month-old) were treated with acetyl-L-carnitine (300 mg/kg body wt., intraperitoneally (i.p.)) 3 h before being killed. Oxygen consumption was measured using succinate as a substrate; adenine nucleotides and lipids were analyzed by high performance liquid chromatography (HPLC). Acetyl-L-carnitine reverses, in synaptic mitochondria, the age-related decrease in the respiratory control ratio due to a higher state 4 respiration rate. Administration of acetyl-L-carnitine to senescent rats does not affect the total adenine nucleotide pool of synaptic and non-synaptic mitochondria which was unchanged with age. Finally, pretreatment of senescent rats with acetyl-L-carnitine brings the cholesterol and phospholipid contents of synaptic mitochondria, reduced in senescent rats, to the adult level; pretreatment of adult rats has no such effect. Altogether these results suggest that acetyl-L-carnitine is able to reverse age-related deficits of brain mitochondria.

In vivo effect of acetyl-L-carnitine on succinate oxidation, adenine nucleotide pool and lipid composition of synaptic and non-synaptic mitochondria from cerebral hemispheres of senescent rats

PETRUZZELLA, Vittoria;CANTATORE, Palmiro
1992-01-01

Abstract

The effect of acetyl-L-carnitine on succinate oxidation, adenine nucleotide pool and lipid composition of synaptic and 'free', non-synaptic, mitochondria in cerebral hemispheres of senescent rats has been studied. Fisher rats (24- or 28-month-old) were treated with acetyl-L-carnitine (300 mg/kg body wt., intraperitoneally (i.p.)) 3 h before being killed. Oxygen consumption was measured using succinate as a substrate; adenine nucleotides and lipids were analyzed by high performance liquid chromatography (HPLC). Acetyl-L-carnitine reverses, in synaptic mitochondria, the age-related decrease in the respiratory control ratio due to a higher state 4 respiration rate. Administration of acetyl-L-carnitine to senescent rats does not affect the total adenine nucleotide pool of synaptic and non-synaptic mitochondria which was unchanged with age. Finally, pretreatment of senescent rats with acetyl-L-carnitine brings the cholesterol and phospholipid contents of synaptic mitochondria, reduced in senescent rats, to the adult level; pretreatment of adult rats has no such effect. Altogether these results suggest that acetyl-L-carnitine is able to reverse age-related deficits of brain mitochondria.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/58017
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact