The gut–brain axis (GBA) is a critical area of research for understanding the pathogen esis of neuroinflammatory and neurodegenerative diseases. Metabolites produced by the gut microbiota, particularly short-chain fatty acids (SCFAs), act as key mediators in this bidirectional communication. While the roles of acetate, propionate, and butyrate are well-established, valeric acid (VA), a five-carbon SCFA, is poorly understood. This comprehensive review explores VA as a gut-derived physiological epigenetic modulator, examining its microbial biosynthesis and systemic effects. This review discusses how VA acts as a selective histone deacetylase inhibitor (HDACi), particularly targeting Class I HDACs, to modulate gene expression and exert neuroprotective and anti-inflammatory effects. The analysis compares VA with its pharmacological analog, valproic acid (VPA), a well-known but non-selective HDACi. This comparison highlights how VA’s physiological nature may offer a more targeted and safer intervention. In conclusion, elucidating VA’s role as a microbiome-derived epigenetic regulator would open promising avenues for therapeutic strategies that directly connect gut and CNS health within the GBA.

Valeric Acid: A Gut-Derived Metabolite as a Potential Epigenetic Modulator of Neuroinflammation in the Gut–Brain Axis

Chiara Paciolla;Michele Manganelli;Anna Gallone;Fabio Sallustio;Mariagiovanna Di Chiano;Gabriella Guida
2025-01-01

Abstract

The gut–brain axis (GBA) is a critical area of research for understanding the pathogen esis of neuroinflammatory and neurodegenerative diseases. Metabolites produced by the gut microbiota, particularly short-chain fatty acids (SCFAs), act as key mediators in this bidirectional communication. While the roles of acetate, propionate, and butyrate are well-established, valeric acid (VA), a five-carbon SCFA, is poorly understood. This comprehensive review explores VA as a gut-derived physiological epigenetic modulator, examining its microbial biosynthesis and systemic effects. This review discusses how VA acts as a selective histone deacetylase inhibitor (HDACi), particularly targeting Class I HDACs, to modulate gene expression and exert neuroprotective and anti-inflammatory effects. The analysis compares VA with its pharmacological analog, valproic acid (VPA), a well-known but non-selective HDACi. This comparison highlights how VA’s physiological nature may offer a more targeted and safer intervention. In conclusion, elucidating VA’s role as a microbiome-derived epigenetic regulator would open promising avenues for therapeutic strategies that directly connect gut and CNS health within the GBA.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/559800
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact