Microplastics (MPs) pose an increasing and significant threat to marine biodiversity and there is a current need to determine the effects of exposure on benthic sessile invertebrates. This study examines the filtration capacity and retention of MP particles, as well as their physiological impacts in the marine sponge Spongia officinalis, a bioindicator species. The findings revealed a very high filtration capacity for MPs within the size range of 1–5 μm, along with a rapid turnover rate, as a large portion of particles were expelled within 48 h of exposure. Histological analyses detected MP particles within the cellular structures of the analyzed tissues, indicating that MPs of this size can penetrate cellular barriers. In terms of physiological effects, detoxification activity was activated during the depuration phase, and lipid peroxidation was observed during both the exposure and depuration phases. Overall, this study provides critical insights into the filtration and retention capacity, intercellular integration of MP particles, and the physiological effects of MP exposure in S. officinalis, providing a baseline for future research.

Microplastic filtering and its physiological effects on the Mediterranean bath sponge Spongia officinalis (Porifera, Demospongiae)

Aguilo-Arce, Joseba;Corriero, Giuseppe;Mastrodonato, Maria;Savino, Ilaria;Semeraro, Daniela
;
Trani, Roberta;Longo, Caterina
2025-01-01

Abstract

Microplastics (MPs) pose an increasing and significant threat to marine biodiversity and there is a current need to determine the effects of exposure on benthic sessile invertebrates. This study examines the filtration capacity and retention of MP particles, as well as their physiological impacts in the marine sponge Spongia officinalis, a bioindicator species. The findings revealed a very high filtration capacity for MPs within the size range of 1–5 μm, along with a rapid turnover rate, as a large portion of particles were expelled within 48 h of exposure. Histological analyses detected MP particles within the cellular structures of the analyzed tissues, indicating that MPs of this size can penetrate cellular barriers. In terms of physiological effects, detoxification activity was activated during the depuration phase, and lipid peroxidation was observed during both the exposure and depuration phases. Overall, this study provides critical insights into the filtration and retention capacity, intercellular integration of MP particles, and the physiological effects of MP exposure in S. officinalis, providing a baseline for future research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/557669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact