In the paper we investigate Trudinger-Moser type inequalities in presence of logarithmic kernels in dimension $N$. A sharp threshold, depending on $N$, is detected for the existence of extremal functions or blow-up, where the domain is the ball or the entire space $\R^N$. We also show that the extremal functions satisfy suitable Euler-Lagrange equations. When the domain is the entire space, such equations can be derived by a $N$-Laplacian Schr\"odinger equation strongly coupled with a higher order fractional Poisson's equation. The results extends \cite{CiWe2} to any dimension $N \geq 2$.

A sharp threshold for Trudinger–Moser type inequalities with logarithmic kernels in dimension N

Alessandro Cannone;Silvia Cingolani
2025-01-01

Abstract

In the paper we investigate Trudinger-Moser type inequalities in presence of logarithmic kernels in dimension $N$. A sharp threshold, depending on $N$, is detected for the existence of extremal functions or blow-up, where the domain is the ball or the entire space $\R^N$. We also show that the extremal functions satisfy suitable Euler-Lagrange equations. When the domain is the entire space, such equations can be derived by a $N$-Laplacian Schr\"odinger equation strongly coupled with a higher order fractional Poisson's equation. The results extends \cite{CiWe2} to any dimension $N \geq 2$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/555186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact