We have successfully applied a strategy based on the "cyberscreening" of the expressed sequence tags database using yeast protein sequences as "probes" to identify the human gene orthologs to BCS1, COX15, PET112, COX11, and SCO1, five yeast genes involved in the biogenesis of the mitochondrial respiratory chain complexes. In yeast, BCS1 is involved mainly in the assembly of complex III, while the other genes appear to control the structure/function of cytochrome-e oxidase, Significant amino acid identity and similarity were demonstrated by comparison of the human with the corresponding yeast polypeptides. Sequence alignment revealed numerous colinear identical regions and the conservation of functional domains. Mitochondrial targeting of the human gene products, suggested by computer analysis of the protein sequences, was confirmed by an in vitro import and protease-protection assay. These data strongly suggest that the human gene products share similar or identical functions with their yeast homologues. Genes controlling the structure/function of the respiratory chain complexes are attractive candidates for human mitochondrial disorders such as Leigh disease. However, both sequence analysis and functional complementation assays on an index patient do not support an etiological role for any of these genes. (C) 1998 Academic Press.

Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain

PETRUZZELLA, Vittoria;
1998-01-01

Abstract

We have successfully applied a strategy based on the "cyberscreening" of the expressed sequence tags database using yeast protein sequences as "probes" to identify the human gene orthologs to BCS1, COX15, PET112, COX11, and SCO1, five yeast genes involved in the biogenesis of the mitochondrial respiratory chain complexes. In yeast, BCS1 is involved mainly in the assembly of complex III, while the other genes appear to control the structure/function of cytochrome-e oxidase, Significant amino acid identity and similarity were demonstrated by comparison of the human with the corresponding yeast polypeptides. Sequence alignment revealed numerous colinear identical regions and the conservation of functional domains. Mitochondrial targeting of the human gene products, suggested by computer analysis of the protein sequences, was confirmed by an in vitro import and protease-protection assay. These data strongly suggest that the human gene products share similar or identical functions with their yeast homologues. Genes controlling the structure/function of the respiratory chain complexes are attractive candidates for human mitochondrial disorders such as Leigh disease. However, both sequence analysis and functional complementation assays on an index patient do not support an etiological role for any of these genes. (C) 1998 Academic Press.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/55426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 124
social impact