Any semigroup S of stochastic matrices induces a semigroup majorization relation ≺S on the set Δn-1 of probability n-vectors. Pick X, Y at random in Δn-1: what is the probability that X and Y are comparable under ≺S? We review recent asymptotic (n→∞) results and conjectures in the case of majorization relation (when S is the set of doubly stochastic matrices), discuss natural generalisations, and prove a new asymptotic result in the case of majorization, and new exact finite-n formulae in the case of UT-majorization relation, i.e. when S is the set of upper-triangular stochastic matrices.

Relative volume of comparable pairs under semigroup majorization

Cunden, Fabio Deelan
;
Gramegna, Giovanni
;
2025-01-01

Abstract

Any semigroup S of stochastic matrices induces a semigroup majorization relation ≺S on the set Δn-1 of probability n-vectors. Pick X, Y at random in Δn-1: what is the probability that X and Y are comparable under ≺S? We review recent asymptotic (n→∞) results and conjectures in the case of majorization relation (when S is the set of doubly stochastic matrices), discuss natural generalisations, and prove a new asymptotic result in the case of majorization, and new exact finite-n formulae in the case of UT-majorization relation, i.e. when S is the set of upper-triangular stochastic matrices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/553340
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact