Forest ecosystems act as major carbon sinks, highlighting the need for the accurate estimation of aboveground biomass (AGB). The Global Ecosystem Dynamic Investigation (GEDI), a full-waveform spaceborne LiDAR system developed by NASA, provides detailed global observations of three-dimensional forest structures, playing a critical role in quantifying biomass and carbon storage. However, its performance has not yet been assessed in the Mediterranean forest ecosystems of Southern Italy. Therefore, the objectives of this study were to (i) evaluate the utility of the GEDI L4A gridded aboveground biomass density (AGBD) product in the Apulia region by comparing it with the Apulia AGBD map, and (ii) develop GEDI-derived AGBD models using multiple GEDI metrics. The results indicated that the GEDI L4A gridded product significantly underestimated AGBD, showing large discrepancies from the reference data (RMSE = 40.756 Mg/ha, bias = −30.075 Mg/ha). In contrast, GEDI-derived AGBD models using random forest (RF), geographically weighted regression (GWR), and multiscale geographically weighted regression (MGWR) demonstrated improved accuracy. Among them, the MGWR model emerged as the optimal choice for AGBD estimation, achieving the lowest RMSE (14.059 Mg/ha), near-zero bias (0.032 Mg/ha), and the highest R2 (0.714). Additionally, the MGWR model consistently outperformed other models across four different plant functional types. These findings underscore the importance of local calibration for GEDI data and demonstrate the capability of the MGWR model to capture scale-dependent relationships in heterogeneous landscapes. Overall, this research highlights the potential of the GEDI to estimate AGBD in the Apulia region and its contribution to enhanced forest management strategies.

From Spaceborne LiDAR to Local Calibration: GEDI’s Role in Forest Biomass Estimation

Lin, Di
Writing – Original Draft Preparation
;
Elia, Mario
Conceptualization
;
Cappelluti, Onofrio
Writing – Review & Editing
;
Lafortezza, Raffaele
Writing – Review & Editing
;
Sanesi, Giovanni
Writing – Review & Editing
;
Giannico, Vincenzo
Supervision
2025-01-01

Abstract

Forest ecosystems act as major carbon sinks, highlighting the need for the accurate estimation of aboveground biomass (AGB). The Global Ecosystem Dynamic Investigation (GEDI), a full-waveform spaceborne LiDAR system developed by NASA, provides detailed global observations of three-dimensional forest structures, playing a critical role in quantifying biomass and carbon storage. However, its performance has not yet been assessed in the Mediterranean forest ecosystems of Southern Italy. Therefore, the objectives of this study were to (i) evaluate the utility of the GEDI L4A gridded aboveground biomass density (AGBD) product in the Apulia region by comparing it with the Apulia AGBD map, and (ii) develop GEDI-derived AGBD models using multiple GEDI metrics. The results indicated that the GEDI L4A gridded product significantly underestimated AGBD, showing large discrepancies from the reference data (RMSE = 40.756 Mg/ha, bias = −30.075 Mg/ha). In contrast, GEDI-derived AGBD models using random forest (RF), geographically weighted regression (GWR), and multiscale geographically weighted regression (MGWR) demonstrated improved accuracy. Among them, the MGWR model emerged as the optimal choice for AGBD estimation, achieving the lowest RMSE (14.059 Mg/ha), near-zero bias (0.032 Mg/ha), and the highest R2 (0.714). Additionally, the MGWR model consistently outperformed other models across four different plant functional types. These findings underscore the importance of local calibration for GEDI data and demonstrate the capability of the MGWR model to capture scale-dependent relationships in heterogeneous landscapes. Overall, this research highlights the potential of the GEDI to estimate AGBD in the Apulia region and its contribution to enhanced forest management strategies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/552676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact