Mucomics is the study of mucus and its biochemical properties. This discipline has gained increasing attention due to the critical roles mucus plays in protection, adhesion, and communication across species. Ethical restrictions on vertebrate research have driven the interest in invertebrate models such as mollusks. Mollusks produce large amounts of mucus which has several functions, including immune defense, digestion, and environmental adaptation. Mollusks-terrestrial, freshwater, or marine-are valuable models for investigating mucus composition and its responses to environmental stressors, including heavy metal contamination. Histochemical and glycomic techniques have revealed variations in mucin glycosylation patterns that influence mucus functionality, such as its viscoelastic and adhesive properties. Bivalves and gastropods, widely used as bioindicators and generally not subject to regulatory constraints in experimental use, accumulate pollutants in their mucus, reflecting environmental health. Investigative techniques such as lectin histochemistry, proteomic, and glycomic analyses provide insights into the impact of contaminants on mucus composition. Further research on molluscan mucins can enhance understanding of their physiological roles, environmental interactions, and potential biomedical applications. By integrating molecular and histochemical approaches, mucomic studies offer a comprehensive perspective on mucus function, advancing both ecological monitoring and biotechnological applications.

Bivalves and Gastropods: Models for the Study of Mucomics

Mentino D.;Mastrodonato M.;Guglielmi M. V.
2025-01-01

Abstract

Mucomics is the study of mucus and its biochemical properties. This discipline has gained increasing attention due to the critical roles mucus plays in protection, adhesion, and communication across species. Ethical restrictions on vertebrate research have driven the interest in invertebrate models such as mollusks. Mollusks produce large amounts of mucus which has several functions, including immune defense, digestion, and environmental adaptation. Mollusks-terrestrial, freshwater, or marine-are valuable models for investigating mucus composition and its responses to environmental stressors, including heavy metal contamination. Histochemical and glycomic techniques have revealed variations in mucin glycosylation patterns that influence mucus functionality, such as its viscoelastic and adhesive properties. Bivalves and gastropods, widely used as bioindicators and generally not subject to regulatory constraints in experimental use, accumulate pollutants in their mucus, reflecting environmental health. Investigative techniques such as lectin histochemistry, proteomic, and glycomic analyses provide insights into the impact of contaminants on mucus composition. Further research on molluscan mucins can enhance understanding of their physiological roles, environmental interactions, and potential biomedical applications. By integrating molecular and histochemical approaches, mucomic studies offer a comprehensive perspective on mucus function, advancing both ecological monitoring and biotechnological applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/551598
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact