Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome with multiple clinical and inflammatory phenotypes. The coexistence of bronchiectasis, known as bronchiectasis–COPD overlap (BCO), identifies a subgroup with increased morbidity and mortality. Non-invasive breath analysis using electronic noses (e-noses) has shown promise in identifying disease-specific volatile organic compound (VOC) patterns (“breathprints”). Our aim was to evaluate the ability of an e-nose to differentiate between COPD and BCO patients, and to assess its utility in detecting inflammatory endotypes (neutrophilic vs. eosinophilic). In a monocentric, prospective, real-life study, 98 patients were enrolled over nine months. Forty-two patients had radiologically confirmed BCO, while fifty-six had COPD without bronchiectasis. Exhaled breath samples were analyzed using the Cyranose 320 e-nose. Principal component analysis (PCA) and discriminant analysis were used to identify group-specific breathprints and inflammatory profiles. PCA revealed significant breathprint differences between BCO and COPD (p = 0.021). Discriminant analysis yielded an overall accuracy of 69.6% (AUC 0.768, p = 0.037). The highest classification performance (76.8%) was achieved when distinguishing eosinophilic COPD from neutrophilic BCO. These findings suggest distinct inflammatory profiles that may be captured non-invasively. E-nose technology holds potential for the non-invasive endotyping of COPD, especially in identifying neutrophilic BCO as a unique inflammatory entity. Breathomics may support early, personalized treatment strategies.
Breathprint-Based Endotyping of COPD and Bronchiectasis COPD Overlap Using Electronic Nose Technology: A Prospective Observational Study
Quaranta V. N.;Dragonieri S.;Vulpi M. R.;Carpagnano G. E.
2025-01-01
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome with multiple clinical and inflammatory phenotypes. The coexistence of bronchiectasis, known as bronchiectasis–COPD overlap (BCO), identifies a subgroup with increased morbidity and mortality. Non-invasive breath analysis using electronic noses (e-noses) has shown promise in identifying disease-specific volatile organic compound (VOC) patterns (“breathprints”). Our aim was to evaluate the ability of an e-nose to differentiate between COPD and BCO patients, and to assess its utility in detecting inflammatory endotypes (neutrophilic vs. eosinophilic). In a monocentric, prospective, real-life study, 98 patients were enrolled over nine months. Forty-two patients had radiologically confirmed BCO, while fifty-six had COPD without bronchiectasis. Exhaled breath samples were analyzed using the Cyranose 320 e-nose. Principal component analysis (PCA) and discriminant analysis were used to identify group-specific breathprints and inflammatory profiles. PCA revealed significant breathprint differences between BCO and COPD (p = 0.021). Discriminant analysis yielded an overall accuracy of 69.6% (AUC 0.768, p = 0.037). The highest classification performance (76.8%) was achieved when distinguishing eosinophilic COPD from neutrophilic BCO. These findings suggest distinct inflammatory profiles that may be captured non-invasively. E-nose technology holds potential for the non-invasive endotyping of COPD, especially in identifying neutrophilic BCO as a unique inflammatory entity. Breathomics may support early, personalized treatment strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


