Using the moduli space of semiorthogonal decompositions in a smooth projective family, introduced by the second, the third and the fourth author, we propose a novel approach to indecomposability questions for derived categories. Modulo a natural conjecture on the structure of the moduli space, we give both general results, and discuss interesting explicit examples of the behaviour of indecomposability in families, by relating it to the behaviour of the canonical base locus in families. These examples are symmetric powers of curves, certain regular surfaces of general type with large canonical base locus, and Hilbert schemes of points on surfaces. Indecomposability for symmetric powers of curves has been settled via other means, the other cases remain open and we expect that our analysis of the base locus will prove instrumental in finding unconditional proofs.
Indecomposability of derived categories in families
Bastianelli F.;
2025-01-01
Abstract
Using the moduli space of semiorthogonal decompositions in a smooth projective family, introduced by the second, the third and the fourth author, we propose a novel approach to indecomposability questions for derived categories. Modulo a natural conjecture on the structure of the moduli space, we give both general results, and discuss interesting explicit examples of the behaviour of indecomposability in families, by relating it to the behaviour of the canonical base locus in families. These examples are symmetric powers of curves, certain regular surfaces of general type with large canonical base locus, and Hilbert schemes of points on surfaces. Indecomposability for symmetric powers of curves has been settled via other means, the other cases remain open and we expect that our analysis of the base locus will prove instrumental in finding unconditional proofs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


