Bioelectronics, originating from Galvani’s eighteenth-century experiments, blends biology, medicine, and electronics to create devices that can be closely connected to biological systems. This review focuses on bioelectronic large-area field-effect transistor (FET) sensing devices, emphasizing their sensitivity, specificity, and reliability. The role of analytical chemistry in op- timizing performance-level control is pivotal, and the review discusses key performance metrics, including limit of identification (LOI), reliability and selectivity. The assessment of the LOI level is addressed using examples of FET-based bioelectronic sensors capable of detecting concentrations at least in the picomolar range. Examples of sensors capable of detecting concen- trations in the tens of zeptomolar range are also provided, demonstrating that a single molecule in 0.1 mL can be reliably detected. Working at the LOI also minimizes random errors, which can be as low as 1%. The review also explores the use of molecularly imprinted polymers for highly selective FET bioelectronic detections, noting their sustainability and robustness in comparison to natural antibodies.
Bioelectronic Large-Area Transistors for High-Performance Sensing
Macchia, Eleonora;Bollella, Paolo;Torsi, Luisa
2025-01-01
Abstract
Bioelectronics, originating from Galvani’s eighteenth-century experiments, blends biology, medicine, and electronics to create devices that can be closely connected to biological systems. This review focuses on bioelectronic large-area field-effect transistor (FET) sensing devices, emphasizing their sensitivity, specificity, and reliability. The role of analytical chemistry in op- timizing performance-level control is pivotal, and the review discusses key performance metrics, including limit of identification (LOI), reliability and selectivity. The assessment of the LOI level is addressed using examples of FET-based bioelectronic sensors capable of detecting concentrations at least in the picomolar range. Examples of sensors capable of detecting concen- trations in the tens of zeptomolar range are also provided, demonstrating that a single molecule in 0.1 mL can be reliably detected. Working at the LOI also minimizes random errors, which can be as low as 1%. The review also explores the use of molecularly imprinted polymers for highly selective FET bioelectronic detections, noting their sustainability and robustness in comparison to natural antibodies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


