In the present paper, we study a class of integral operators of probabilistic type, which are constructed by means of the generalized Gamma distribution. In particular, we discuss their approximation properties in weighted continuous function spaces and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-spaces, providing some estimates of the rate of convergence by means of different moduli of smoothness as well as an asymptotic formula. The paper concludes with some illustrative examples.

On the approximation properties of generalized Gamma-type operators in several function spaces

Cappelletti Montano, M;Leonessa, V;Travaglini, A
2025-01-01

Abstract

In the present paper, we study a class of integral operators of probabilistic type, which are constructed by means of the generalized Gamma distribution. In particular, we discuss their approximation properties in weighted continuous function spaces and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-spaces, providing some estimates of the rate of convergence by means of different moduli of smoothness as well as an asymptotic formula. The paper concludes with some illustrative examples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/545201
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact