We investigate a two-dimensional system of active Brownian dumbbells using molecular dynamics simulations. In this model, each dumbbell is driven by an active force oriented perpendicular to the axis connecting its two constituent beads. We characterize the resulting phase behavior and find that, across all values of activity, the system undergoes phase separation between dilute and dense phases. The dense phase exhibits hexatic order, and for large enough activity, we observe a marked increase in local polarization, with dumbbells predominantly oriented towards the interior of the clusters. Compared to the case of axially self-propelled dumbbells, we find that the binodal region is enlarged towards lower densities at all activities. This shift arises because dumbbells with transverse propulsion can more easily form stable cluster cores, serving as nucleation seeds, and show a highly suppressed escaping rate from the cluster boundary. Finally, we observe that clusters exhibit spontaneous rotation, with the modulus of the angular velocity scaling as ω ∼ rg^-2 , where rg is the cluster’s radius of gyration. This contrasts with axially propelled dumbbells, where the scaling follows ωg ∼ r^-1 . We develop a simplified analytical model to rationalize this scaling behavior.

Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells

Digregorio, Pasquale
;
Caporusso, Claudio Basilio;Carenza, Lucio Mauro;Gonnella, Giuseppe;Moretti, Daniela;Negro, Giuseppe;Semeraro, Massimiliano;Suma, Antonio
2025-01-01

Abstract

We investigate a two-dimensional system of active Brownian dumbbells using molecular dynamics simulations. In this model, each dumbbell is driven by an active force oriented perpendicular to the axis connecting its two constituent beads. We characterize the resulting phase behavior and find that, across all values of activity, the system undergoes phase separation between dilute and dense phases. The dense phase exhibits hexatic order, and for large enough activity, we observe a marked increase in local polarization, with dumbbells predominantly oriented towards the interior of the clusters. Compared to the case of axially self-propelled dumbbells, we find that the binodal region is enlarged towards lower densities at all activities. This shift arises because dumbbells with transverse propulsion can more easily form stable cluster cores, serving as nucleation seeds, and show a highly suppressed escaping rate from the cluster boundary. Finally, we observe that clusters exhibit spontaneous rotation, with the modulus of the angular velocity scaling as ω ∼ rg^-2 , where rg is the cluster’s radius of gyration. This contrasts with axially propelled dumbbells, where the scaling follows ωg ∼ r^-1 . We develop a simplified analytical model to rationalize this scaling behavior.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/543163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact