In this paper we prove the existence of normalized solutions (lambda, u), subset of (0, infinity) x H-1(R-3) to the following Schrodinger-Poisson equation { -Delta u + V(x)u + )u + (|x|(-1) * u(2))u = |u|(p-2)u in R-3, u > 0, integral(3)(R) u(2)dx = a(2), where a > 0 is fixed, p is an element of ( 10/3 , 6) is a given exponent and the potential V satisfies some suitable conditions. Since the L-2(R-3)-norm of u is fixed, ) appears as a Lagrange multiplier. For V (x) >= 0, our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729-1756, 2021). For V (x) <= 0, we directly construct an entire mountain-pass solution with positive energy.

Normalized solutions of mass supercritical Schrödinger–Poisson equation with potential

Rizzi M.
2025-01-01

Abstract

In this paper we prove the existence of normalized solutions (lambda, u), subset of (0, infinity) x H-1(R-3) to the following Schrodinger-Poisson equation { -Delta u + V(x)u + )u + (|x|(-1) * u(2))u = |u|(p-2)u in R-3, u > 0, integral(3)(R) u(2)dx = a(2), where a > 0 is fixed, p is an element of ( 10/3 , 6) is a given exponent and the potential V satisfies some suitable conditions. Since the L-2(R-3)-norm of u is fixed, ) appears as a Lagrange multiplier. For V (x) >= 0, our solutions are obtained by using a mountain-pass argument on bounded domains and a limit process introduced by Bartsch et al (Commun Partial Differ Equ 46:1729-1756, 2021). For V (x) <= 0, we directly construct an entire mountain-pass solution with positive energy.
File in questo prodotto:
File Dimensione Formato  
12-PR.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 652.04 kB
Formato Adobe PDF
652.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
12-PR-arxiv.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 430.54 kB
Formato Adobe PDF
430.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/542720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact