In this work we study existence, asymptotic behaviour and stability properties of O(m) x O(n)-invariant solutions of the Allen-Cahn equation Delta u + u(1 - u(2)) = 0 in R-m x R-n with m, n >= 2 and m + n >= 8. We exhibit four families of solutions whose nodal sets are smooth logarithmic corrections of the Lawson cone and with infinite Morse index. This work complements the study started in [23] by Pacard and Wei and [1] by Agudelo, Kowalczyk and Rizzi.
k-ended O(m)×O(n) invariant solutions to the Allen-Cahn equation with infinite Morse index
Rizzi M.
2022-01-01
Abstract
In this work we study existence, asymptotic behaviour and stability properties of O(m) x O(n)-invariant solutions of the Allen-Cahn equation Delta u + u(1 - u(2)) = 0 in R-m x R-n with m, n >= 2 and m + n >= 8. We exhibit four families of solutions whose nodal sets are smooth logarithmic corrections of the Lawson cone and with infinite Morse index. This work complements the study started in [23] by Pacard and Wei and [1] by Agudelo, Kowalczyk and Rizzi.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
10-AR.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
607.23 kB
Formato
Adobe PDF
|
607.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
10-AR-arxiv.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
422.37 kB
Formato
Adobe PDF
|
422.37 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


