This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation-Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-Nin the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.
Normalized solutions of mass supercritical Schrödinger equations with potential
Molle R.;Rizzi M.;
2021-01-01
Abstract
This paper is concerned with the existence of normalized solutions of the nonlinear Schrodinger equation-Delta u + V(x)u + lambda u = vertical bar u vertical bar(p-2)u in R-Nin the mass supercritical and Sobolev subcritical case 2 + 4/N < p < 2*. We prove the existence of a solution (u, lambda) is an element of H-1 (R-N) x R+ with prescribed L-2-norm parallel to u parallel to(2) = rho under various conditions on the potential V : R-N -> R, positive and vanishing at infinity, including potentials with singularities. The proof is based on a new min-max argument.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
9-BMRV.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
9-BMRV-arxiv.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
306.56 kB
Formato
Adobe PDF
|
306.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


