We construct new families of two-ended O(m) x O(n)-invariant solutions to the Allen-Cahn equation Delta u + u - u(3)=0 in RN+1, with N >= 7, whose zero level sets diverge logarithmically from the Lawson cone at infinity. The construction is based on a careful study of the Jacobi-To da system on a given O(m) x O(n)-invariant manifold, which is asymptotic to the Lawson cone at infinity.

Doubling construction for O(m)×O(n) invariant solutions to the Allen–Cahn equation

Rizzi M.
2022-01-01

Abstract

We construct new families of two-ended O(m) x O(n)-invariant solutions to the Allen-Cahn equation Delta u + u - u(3)=0 in RN+1, with N >= 7, whose zero level sets diverge logarithmically from the Lawson cone at infinity. The construction is based on a careful study of the Jacobi-To da system on a given O(m) x O(n)-invariant manifold, which is asymptotic to the Lawson cone at infinity.
File in questo prodotto:
File Dimensione Formato  
8-AKR.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
8-AKR-arxiv.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 683.88 kB
Formato Adobe PDF
683.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/542687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact