We construct new families of two-ended O(m) x O(n)-invariant solutions to the Allen-Cahn equation Delta u + u - u(3)=0 in RN+1, with N >= 7, whose zero level sets diverge logarithmically from the Lawson cone at infinity. The construction is based on a careful study of the Jacobi-To da system on a given O(m) x O(n)-invariant manifold, which is asymptotic to the Lawson cone at infinity.
Doubling construction for O(m)×O(n) invariant solutions to the Allen–Cahn equation
Rizzi M.
2022-01-01
Abstract
We construct new families of two-ended O(m) x O(n)-invariant solutions to the Allen-Cahn equation Delta u + u - u(3)=0 in RN+1, with N >= 7, whose zero level sets diverge logarithmically from the Lawson cone at infinity. The construction is based on a careful study of the Jacobi-To da system on a given O(m) x O(n)-invariant manifold, which is asymptotic to the Lawson cone at infinity.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
8-AKR.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
8-AKR-arxiv.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
683.88 kB
Formato
Adobe PDF
|
683.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


