Let Sigma be a surface of constant mean curvature in R-3 with multiple Delaunay ends. Assuming that Sigma is non degenerate in this paper we construct new solutions to the Cahn-Hilliard equation epsilon Delta u + epsilon(-1)u(1 - u(2)) = l(epsilon) in R-3 such that as epsilon -> 0 the zero level set of u(epsilon) approaches Sigma. Moreover, on compacts of the connected components of R-3\Sigma we have 1 - vertical bar u(epsilon)vertical bar -> 0 uniformly.
Multiple Delaunay ends solutions of the Cahn-Hilliard equation
Rizzi M.
2022-01-01
Abstract
Let Sigma be a surface of constant mean curvature in R-3 with multiple Delaunay ends. Assuming that Sigma is non degenerate in this paper we construct new solutions to the Cahn-Hilliard equation epsilon Delta u + epsilon(-1)u(1 - u(2)) = l(epsilon) in R-3 such that as epsilon -> 0 the zero level set of u(epsilon) approaches Sigma. Moreover, on compacts of the connected components of R-3\Sigma we have 1 - vertical bar u(epsilon)vertical bar -> 0 uniformly.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
6-KR.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.37 MB
Formato
Adobe PDF
|
3.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
6-KR-arxiv.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
528.23 kB
Formato
Adobe PDF
|
528.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


