In this paper we construct entire solutions to the phase field equation of Willmore type in the Euclidean plane, where W(u) is the standard double-well potential . Such solutions have a non-trivial profile that shadows a Willmore planar curve, and converge uniformly to as . These solutions give a counterexample to the counterpart of Gibbons' conjecture for the fourth-order counterpart of the Allen-Cahn equation. We also study the x (2)-derivative of these solutions using the special structure of Willmore's equation.

Periodic Solutions to a Cahn–Hilliard–Willmore Equation in the Plane

Rizzi M.
2018-01-01

Abstract

In this paper we construct entire solutions to the phase field equation of Willmore type in the Euclidean plane, where W(u) is the standard double-well potential . Such solutions have a non-trivial profile that shadows a Willmore planar curve, and converge uniformly to as . These solutions give a counterexample to the counterpart of Gibbons' conjecture for the fourth-order counterpart of the Allen-Cahn equation. We also study the x (2)-derivative of these solutions using the special structure of Willmore's equation.
File in questo prodotto:
File Dimensione Formato  
4-MMR.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 640.93 kB
Formato Adobe PDF
640.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
4-MMR-arxiv.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 767.11 kB
Formato Adobe PDF
767.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/542624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact