We introduce a robust variant of smoothing spline regression which exploits an entropy-based argument to automatically detect and remove outliers during the fitting procedure. This involves considering a penalized weighted residual sum of squares, with the distribution of weights determined by maximizing the associated entropy function. An illustrative example is provided to show the potential of the new approach compared to other standard robust techniques. Additionally, we include examples on datasets derived from real-world applications.

A robust variant of cubic smoothing spline approximation

Falini A.;Iavernaro F.
;
Losito S.;Mazzia F.;
2025-01-01

Abstract

We introduce a robust variant of smoothing spline regression which exploits an entropy-based argument to automatically detect and remove outliers during the fitting procedure. This involves considering a penalized weighted residual sum of squares, with the distribution of weights determined by maximizing the associated entropy function. An illustrative example is provided to show the potential of the new approach compared to other standard robust techniques. Additionally, we include examples on datasets derived from real-world applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/538163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact