Hybrid tensor networks (hTNs) offer a promising solution for encoding variational quantum states beyond the capabilities of efficient classical methods or noisy quantum computers alone. However, their practical usefulness and many operational aspects of hTN-based algorithms, like the optimization of hTNs, the generalization of standard contraction rules to an hybrid setting, and the design of application-oriented architectures have not been thoroughly investigated yet. In this work, we introduce a novel algorithm to perform ground-state optimizations with hybrid tree tensor networks (hTTNs), discussing its advantages and roadblocks, and identifying a set of promising applications. We benchmark our approach on two paradigmatic models, namely the Ising model at the critical point and the Toric-code Hamiltonian. In both cases, we successfully demonstrate that hTTNs can improve upon classical equivalents with equal bond dimension in the classical part.

Hybrid Tree Tensor Networks for Quantum Simulation

Magnifico, Giuseppe;
2025-01-01

Abstract

Hybrid tensor networks (hTNs) offer a promising solution for encoding variational quantum states beyond the capabilities of efficient classical methods or noisy quantum computers alone. However, their practical usefulness and many operational aspects of hTN-based algorithms, like the optimization of hTNs, the generalization of standard contraction rules to an hybrid setting, and the design of application-oriented architectures have not been thoroughly investigated yet. In this work, we introduce a novel algorithm to perform ground-state optimizations with hybrid tree tensor networks (hTTNs), discussing its advantages and roadblocks, and identifying a set of promising applications. We benchmark our approach on two paradigmatic models, namely the Ising model at the critical point and the Toric-code Hamiltonian. In both cases, we successfully demonstrate that hTTNs can improve upon classical equivalents with equal bond dimension in the classical part.
File in questo prodotto:
File Dimensione Formato  
PRXQuantum.6.010320.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/531180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact