This study proposes a novel forgery detection method based on the analysis of frequency components of images using the Discrete Fourier Transform (DFT). In recent years, face manipulation technologies, particularly Generative Adversarial Networks (GANs), have advanced to such an extent that their misuse, such as creating deepfakes indistinguishable to human observers, has become a significant societal concern. We reviewed two GAN architectures, StyleGAN and StyleGAN2, generating synthetic faces that were compared with real faces from the FFHQ and CelebA-HQ datasets. The key results demonstrate classification accuracies above 99%, with F1 scores of 99.94% for Support Vector Machines and 97.21% for Random Forest classifiers. These findings underline the fact that performing frequency analysis presents a superior approach to deepfake detection compared to traditional spatial detection methods. It provides insight into subtle manipulation cues in digital images and offers a scalable way to enhance security protocols amid rising digital impersonation threats.

Discrete Fourier Transform in Unmasking Deepfake Images: A Comparative Study of StyleGAN Creations

Convertini, Vito Nicola;Impedovo, Donato;Lopez, Ugo;Pirlo, Giuseppe;Sterlicchio, Gioacchino
2024-01-01

Abstract

This study proposes a novel forgery detection method based on the analysis of frequency components of images using the Discrete Fourier Transform (DFT). In recent years, face manipulation technologies, particularly Generative Adversarial Networks (GANs), have advanced to such an extent that their misuse, such as creating deepfakes indistinguishable to human observers, has become a significant societal concern. We reviewed two GAN architectures, StyleGAN and StyleGAN2, generating synthetic faces that were compared with real faces from the FFHQ and CelebA-HQ datasets. The key results demonstrate classification accuracies above 99%, with F1 scores of 99.94% for Support Vector Machines and 97.21% for Random Forest classifiers. These findings underline the fact that performing frequency analysis presents a superior approach to deepfake detection compared to traditional spatial detection methods. It provides insight into subtle manipulation cues in digital images and offers a scalable way to enhance security protocols amid rising digital impersonation threats.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/529880
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact