We give formulae for the cumulants of complex Wishart (LUE) and inverse Wishart matrices (inverse LUE). Their large-N expansions are generating functions of double (strictly and weakly) monotone Hurwitz numbers which count constrained factorisations in the symmetric group. The two expansions can be compared and combined with a duality relation proved in [F. D. Cunden, F. Mezzadri, N. O’Connell, and N. J. Simm, Moments of random matrices and hypergeometric orthogonal polynomials, Comm. Math. Phys. 369 (2019), no. 3, 1091–1145] to obtain: I) a combinatorial proof of the reflection formula between moments of LUE and inverse LUE at genus zero and, ii) a new functional relation between the generating functions of monotone and strictly monotone Hurwitz numbers. The main result resolves the integrality conjecture formulated in [F. D. Cunden, F. Mezzadri, N. J. Simm, and P. Vivo, Correlators for the Wigner–Smith time-delay matrix of chaotic cavities, J. Phys. A 49 (2016), no. 18, 18LT01, 20 pp] on the time-delay cumulants in quantum chaotic transport. The precise combinatorial description of the cumulants given here may cast new light on the concordance between random matrix and semiclassical theories.

Integer moments of complex wish art matrices and Hurwitz numbers

Cunden F. D.;
2021-01-01

Abstract

We give formulae for the cumulants of complex Wishart (LUE) and inverse Wishart matrices (inverse LUE). Their large-N expansions are generating functions of double (strictly and weakly) monotone Hurwitz numbers which count constrained factorisations in the symmetric group. The two expansions can be compared and combined with a duality relation proved in [F. D. Cunden, F. Mezzadri, N. O’Connell, and N. J. Simm, Moments of random matrices and hypergeometric orthogonal polynomials, Comm. Math. Phys. 369 (2019), no. 3, 1091–1145] to obtain: I) a combinatorial proof of the reflection formula between moments of LUE and inverse LUE at genus zero and, ii) a new functional relation between the generating functions of monotone and strictly monotone Hurwitz numbers. The main result resolves the integrality conjecture formulated in [F. D. Cunden, F. Mezzadri, N. J. Simm, and P. Vivo, Correlators for the Wigner–Smith time-delay matrix of chaotic cavities, J. Phys. A 49 (2016), no. 18, 18LT01, 20 pp] on the time-delay cumulants in quantum chaotic transport. The precise combinatorial description of the cumulants given here may cast new light on the concordance between random matrix and semiclassical theories.
File in questo prodotto:
File Dimensione Formato  
1809.10033v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 428.8 kB
Formato Adobe PDF
428.8 kB Adobe PDF Visualizza/Apri
12_Cunden_AIHPD.pdf

non disponibili

Descrizione: Versione editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 296.83 kB
Formato Adobe PDF
296.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/528842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact