We give formulae for the cumulants of complex Wishart (LUE) and inverse Wishart matrices (inverse LUE). Their large-N expansions are generating functions of double (strictly and weakly) monotone Hurwitz numbers which count constrained factorisations in the symmetric group. The two expansions can be compared and combined with a duality relation proved in [F. D. Cunden, F. Mezzadri, N. O’Connell, and N. J. Simm, Moments of random matrices and hypergeometric orthogonal polynomials, Comm. Math. Phys. 369 (2019), no. 3, 1091–1145] to obtain: I) a combinatorial proof of the reflection formula between moments of LUE and inverse LUE at genus zero and, ii) a new functional relation between the generating functions of monotone and strictly monotone Hurwitz numbers. The main result resolves the integrality conjecture formulated in [F. D. Cunden, F. Mezzadri, N. J. Simm, and P. Vivo, Correlators for the Wigner–Smith time-delay matrix of chaotic cavities, J. Phys. A 49 (2016), no. 18, 18LT01, 20 pp] on the time-delay cumulants in quantum chaotic transport. The precise combinatorial description of the cumulants given here may cast new light on the concordance between random matrix and semiclassical theories.
Integer moments of complex wish art matrices and Hurwitz numbers
Cunden F. D.;
2021-01-01
Abstract
We give formulae for the cumulants of complex Wishart (LUE) and inverse Wishart matrices (inverse LUE). Their large-N expansions are generating functions of double (strictly and weakly) monotone Hurwitz numbers which count constrained factorisations in the symmetric group. The two expansions can be compared and combined with a duality relation proved in [F. D. Cunden, F. Mezzadri, N. O’Connell, and N. J. Simm, Moments of random matrices and hypergeometric orthogonal polynomials, Comm. Math. Phys. 369 (2019), no. 3, 1091–1145] to obtain: I) a combinatorial proof of the reflection formula between moments of LUE and inverse LUE at genus zero and, ii) a new functional relation between the generating functions of monotone and strictly monotone Hurwitz numbers. The main result resolves the integrality conjecture formulated in [F. D. Cunden, F. Mezzadri, N. J. Simm, and P. Vivo, Correlators for the Wigner–Smith time-delay matrix of chaotic cavities, J. Phys. A 49 (2016), no. 18, 18LT01, 20 pp] on the time-delay cumulants in quantum chaotic transport. The precise combinatorial description of the cumulants given here may cast new light on the concordance between random matrix and semiclassical theories.File | Dimensione | Formato | |
---|---|---|---|
1809.10033v2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
428.8 kB
Formato
Adobe PDF
|
428.8 kB | Adobe PDF | Visualizza/Apri |
12_Cunden_AIHPD.pdf
non disponibili
Descrizione: Versione editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
296.83 kB
Formato
Adobe PDF
|
296.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.