We prove the existence of infinitely many solutions for symmetric elliptic systems with nonlinearities of arbitrary growth. Moreover, if the symmetry of the problem is broken by a small enough perturbation term, we find at least three solutions. The proofs utilise a variational setting given by de Figueiredo and Ruf in order to prove an existence’s result and the “algebraic” approach based on the Pohozaev’s fibering method.
Multiple solutions for elliptic systems with nonlinearities of arbitrary growth
SALVATORE, Addolorata
2008-01-01
Abstract
We prove the existence of infinitely many solutions for symmetric elliptic systems with nonlinearities of arbitrary growth. Moreover, if the symmetry of the problem is broken by a small enough perturbation term, we find at least three solutions. The proofs utilise a variational setting given by de Figueiredo and Ruf in order to prove an existence’s result and the “algebraic” approach based on the Pohozaev’s fibering method.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.