We study a model chiral fluid in two dimensions composed of Brownian disks interacting via a Lennard-Jones potential and a nonconservative transverse force, mimicking colloids spinning at a given rate. The system exhibits a phase separation between a chiral liquid and a dilute gas phase that can be characterized using a thermodynamic framework. We compute the equations of state and show that the surface tension controls interface corrections to the coexisting pressure predicted from the equal-area construction. Transverse forces increase surface tension and generate edge currents at the liquid-gas interface. The analysis of these currents shows that the rotational viscosity introduced in chiral hydrodynamics is consistent with microscopic bulk mechanical measurements. Chirality can also break the solid phase, giving rise to a dense fluid made of rotating hexatic patches. Our Letter paves the way for the development of the statistical mechanics of chiral particles assemblies.

Phase Coexistence and Edge Currents in the Chiral Lennard-Jones Fluid

Caporusso, Claudio B.;Gonnella, Giuseppe;
2024-01-01

Abstract

We study a model chiral fluid in two dimensions composed of Brownian disks interacting via a Lennard-Jones potential and a nonconservative transverse force, mimicking colloids spinning at a given rate. The system exhibits a phase separation between a chiral liquid and a dilute gas phase that can be characterized using a thermodynamic framework. We compute the equations of state and show that the surface tension controls interface corrections to the coexisting pressure predicted from the equal-area construction. Transverse forces increase surface tension and generate edge currents at the liquid-gas interface. The analysis of these currents shows that the rotational viscosity introduced in chiral hydrodynamics is consistent with microscopic bulk mechanical measurements. Chirality can also break the solid phase, giving rise to a dense fluid made of rotating hexatic patches. Our Letter paves the way for the development of the statistical mechanics of chiral particles assemblies.
File in questo prodotto:
File Dimensione Formato  
prl_132_168201_2023_caporusso_gonnella_levis.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
condmat_2307_03528v1_levis_caporusso_gonnella_chiral.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 9.47 MB
Formato Adobe PDF
9.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/524947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact