Aging is often associated with decline in brain processing power and neural predictive capabilities. To challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to record the whole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged 18–25 years) during recognition of previously memorised and varied musical sequences. Results reveal that when recognising memorised sequences, the brain of older compared to young adults reshapes its functional organisation. In fact, it shows increased early activity in sensory regions such as the left auditory cortex (100 ms and 250 ms after each note), and only moderate decreased activity (350 ms) in medial temporal lobe and prefrontal regions. When processing the varied sequences, older adults show a marked reduction of the fast-scale functionality (250 ms after each note) of higher-order brain regions including hippocampus, ventromedial prefrontal and inferior temporal cortices, while no differences are observed in the auditory cortex. Accordingly, young outperform older adults in the recognition of novel sequences, while no behavioural differences are observed with regards to memorised ones. Our findings show age-related neural changes in predictive and memory processes, integrating existing theories on compensatory neural mechanisms in non-pathological aging.

Age-related neural changes underlying long-term recognition of musical sequences

Carlomagno, Francesco;Brattico, Elvira;
2024-01-01

Abstract

Aging is often associated with decline in brain processing power and neural predictive capabilities. To challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to record the whole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged 18–25 years) during recognition of previously memorised and varied musical sequences. Results reveal that when recognising memorised sequences, the brain of older compared to young adults reshapes its functional organisation. In fact, it shows increased early activity in sensory regions such as the left auditory cortex (100 ms and 250 ms after each note), and only moderate decreased activity (350 ms) in medial temporal lobe and prefrontal regions. When processing the varied sequences, older adults show a marked reduction of the fast-scale functionality (250 ms after each note) of higher-order brain regions including hippocampus, ventromedial prefrontal and inferior temporal cortices, while no differences are observed in the auditory cortex. Accordingly, young outperform older adults in the recognition of novel sequences, while no behavioural differences are observed with regards to memorised ones. Our findings show age-related neural changes in predictive and memory processes, integrating existing theories on compensatory neural mechanisms in non-pathological aging.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/523742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact